Sesquiterpenoids and Lactone Derivatives from Ligularia dentata

by Hitomi Baba, Yasunori Yaoita, and Masao Kikuchi*

Department of Molecular Structural Analysis, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan (phone: +81222344181; fax: +81222752013; e-mail: mkikuchi@tohoku-pharm.ac.jp)

Seven new compounds were isolated from the roots of *Ligularia dentata*, including five bisabolanetype sesquiterpenoids (bisabolane = 1-(1,5-dimethylhexyl)-4-methylcyclohexane), namely (8β ,10 α)-8-(angeloyloxy)-5,10-epoxybisabola-1,3,5,7(14)-tetraene-2,4,11-triol (1), (8β ,10 α)-8-(angeloyloxy)-5,10epoxythiazolo[5,4- α]bisabola-1,3,5,7(14)-tetraene-4,11-diol (2), (1α , 2α , 3β , 5α , 6β)-1,5,8-tris(angeloyloxy)-10,11-epoxy-2,3-dihydroxybisabol-7(14)-en-4-one (3), (1α , 2α , 3β , 5α , 6β)-2,5,8-tris(angeloyloxy)-10,11-epoxy-1,3-dihydroxybisabol-7(14)-en-4-one (4), and (1α , 2β , 3β , 5α , 6β)-1,8-bis(angeloyloxy)-2,3epoxy-5,10-dihydroxy-11-methoxybisabol-7(14)-en-4-one (5) (angeloyloxy = [(2Z)-2-methyl-1-oxobut-2-enyl]oxy), and two lactone derivatives, (2α , 3β , 5α)-2-(acetyloxy)-9-methoxy-5-(methoxycarbonyl)-2,3dimethylheptano-5-lactone (6), and (2β , 4β)-2-ethyl-5-hydroxy-5-(methoxycarbonyl)-4,5-dimethylpentano-4-lactone (7) (α/β denote relative configurations), together with (2E,4R,5S)-2-ethylidene-5-(methoxycarbonyl)-4-methylhexano-5-lactone (8), a known synthetic compound. Compound 2 is the first sesquiterpenoid derivative containing the uncommon benzothiazole moiety. The structures of 1-8 were established by spectroscopic methods, especially 2D-NMR and MS analyses.

Introduction. – Ligularia dentata HARA (Compositae) has long been used as a medicinal herb for easing breathing, stimulating blood flow, reducing inflammation, alleviating pain, stopping coughs, and getting rid of phlegm in China [1]. Previous phytochemical investigations of this plant resulted in the isolation of phenolic norsesquiterpenoids [1-3], bisabolane-type sesquiterpenoids [4][5], (bisabolane = 1-(1,5-dimethylhexyl)-4-methylcyclohexane) and pyrrolizidine alkaloids [6]. In continuation of our studies aimed at finding new chemical constituents from the genus Ligularia [7], we now report the isolation of the seven new compounds 1-7 and of the known synthetic compound 8.

Results and Discussion. – The Et₂O fraction of a MeOH extract of the roots of *Ligularia dentata* yielded compounds **1**–**8** after repeated silica gel column chromatography and prep. HPLC. Compound **1** was obtained as a colorless oil. The molecular formula of **1** was determined as $C_{20}H_{26}O_6$ based on the HR-EI-MS (m/z 362.1721 (M^+)). The IR spectrum showed the presence of an OH group (3605, 3383 cm⁻¹), an α,β -unsaturated ester (1708, 1647 cm⁻¹), and an aromatic ring (1630, 1588, 1504 cm⁻¹). The structure of **1** was elucidated as ($8\beta,10\alpha$)-8-(angeloyloxy)-5,10-epoxybisabola-1,3,5,7(14)-tetraene-2,4,11-triol¹) by spectroscopic means. So far, the absolute configuration of **1** could not be determined.

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

The ¹H- and ¹³C-NMR spectra of **1** in CDCl₃ (*Table 1*) exhibited signals due to a substituted i-Pr group (δ (H) 1.26 (s), 1.38 (s); δ (C) 22.8 (Me), 27.6 (Me), 73.3 (C)), an angeloyloxy (=[(2Z)-2-methyl-1-oxobut-2-enyl]oxy) group (δ (H) 1.70 (dq, J = 1.5, 1.5 Hz), 1.78 (dq, J = 7.3, 1.5 Hz), 5.99 (qq, J = 7.3 Hz), 5.99 (qq, J = 7.3 Hz), 5.99 (qq, J = 7.3 Hz), 5.99 (qq1.5 Hz; $\delta(\text{C}) 15.6 \text{ (Me)}$, 20.5 (Me), 127.8 (C), 138.2 (CH), 166.7 (C) [4], one Me group attached to an aromatic ring (δ (H) 2.15 (s); δ (C) 8.4 (Me)), a methylidene group (δ (H) 5.30 (d, J = 1.5 Hz), 5.43 (d, J = 0.7 Hz; $\delta(\text{C})$ 117.5 (CH₂), 145.2 (C)), one CH₂ group ($\delta(\text{H})$ 2.16–2.22 (m); $\delta(\text{C})$ 37.0 (CH₂)), two oxygenated CH groups (δ (H) 3.77 (*dd*, *J* = 10.6, 2.6 Hz), 5.79 (*dd*, *J* = 4.8, 4.8 Hz); δ (C) 73.5 (CH), 84.1 (CH)), and an aromatic ring (δ(H) 6.19 (s); δ(C) 105.8 (CH), 110.7 (C), 129.4 (C), 137.4 (C), 147.2 (C), 150.4 (C)). Furthermore, signals at δ (H) 1.83 (br. s), 4.56 (br. s), and 7.44 (br. s) were observed which disappeared by adding D_2O , indicating the presence of OH protons. The ¹H, ¹H-COSY spectrum of 1 (Fig. 1, a) implied the connectivities $H-C(8)/CH_2(9)$ and $CH_2(9)/H-C(10)$. The HMBC spectrum (Fig. 1, a) showed the correlations H-C(1)/C(2) and C(7), H-C(10)/C(5), Me(12)/C(10), Me(13)/C(10), C(10), CH₂(14)/C(6) and C(8), Me(15)/C(2) and C(4), OH-C(2)/C(2), OH-C(4)/C(4), and OH-C(11)/C(10). By considering the chemical shift of H-C(8) ($\delta(H)$ 5.79), the linking position of the angeloyloxy group was determined to be C(8). From these data, the constitutional formula of 1 was deduced. The relative configuration at C(8) and C(10) was established as follows (Fig. 1, b). The coupling constants $J(8,9\alpha)$ and $J(8,9\beta)$ of 4.8 Hz each indicated that the angeloyloxy group at C(8) is β -oriented. Furthermore, $J(9\alpha,10) = 10.6$ Hz and $J(9\beta,10) = 2.6$ Hz indicated that the side-chain at C(10) is α oriented.

¹) Trivial or arbitrary atom numbering; for systematic names, see *Exper. Part.* The stereodescriptors a/β denote relative configurations with respect to the mean plane of the structure.

Fig. 1. a) ${}^{1}H, {}^{1}H-COSY$ (-) and HMBC (-) Correlations and b) selected J-values (----) for 1

	1 (CDCl ₃)		1 (CD ₃ OD)		2 (CD ₃ OD)	
	$\delta(\mathrm{H})^{\mathrm{a}})$	$\delta(C)^{b})$	$\delta(\mathrm{H})^{c})$	$\delta(C)^d)$	$\delta(\mathrm{H})^{c})$	$\delta(C)^d)$
H-C(1) or C(1)	6.19 (s)	105.8	6.16 (s)	106.4	-	125.8
C(2)	-	150.4	-	152.8	-	150.5
C(3)	-	110.7	-	112.6	-	118.8
C(4)	-	147.2	-	148.2	-	146.8
C(5)	-	137.4	-	138.7	-	144.8
C(6)	-	129.4	-	129.9	-	123.3
C(7)	-	145.2	-	147.7	-	147.8
H-C(8)	5.79 (dd, J = 4.8, 4.8)	73.5	5.73 (dd, J = 4.4, 4.4)	75.2	5.85 (dd, J = 4.1, 4.1)	74.9
$CH_{2}(9)$	2.16 - 2.22 (m)	37.0	2.15–2.25 (<i>m</i> , 2 H)	38.1	2.27 - 2.30 (m)	37.9
H - C(10)	3.77 (dd, J = 10.6, 2.6)	84.1	3.72 (dd, J = 9.8, 3.9)	86.3	3.83 (dd, J = 9.3, 3.7)	86.4
C(11)	-	73.3	-	73.1	-	73.1
Me(12)	$1.26 (s)^{e}$	27.6 ^f)	$1.20(s)^{e}$	27.0 ^f)	$1.22 (s)^{e}$	26.9 ^f)
Me(13)	$1.38(s)^{e}$	22.8^{f}	$1.27 (s)^{e}$	23.0^{f}	$1.34(s)^{e}$	22.6 ^f)
$CH_{2}(14)$	5.30 (d, J = 1.5),	117.5	5.25(d, J = 1.5),	115.8	5.63 (d, J = 0.5),	119.5
,	5.43 (d, J = 0.7)		5.36(d, J = 0.7)		5.80 (s)	
Me(15)	2.15(s)	8.4	2.05(s)	8.8	2.58(s)	11.5
H - C(16)	-	_	-	_	9.01 (s)	155.1
C(1')	-	166.7	-	168.1	-	167.9
C(2')	-	127.8	-	129.1	-	128.8
H-C(3')	5.99(qq, J = 7.3, 1.5)	138.2	6.04 (qq, J = 7.3, 1.5)	139.0	5.94 (qq, J = 7.3, 1.5)	139.0
Me(4')	1.78 (dq, J = 7.3, 1.5)	15.6	1.76 (dq, J = 7.3, 1.5)	15.8	1.59 (dq, J = 7.3, 1.5)	15.6
Me(5')	1.70 (dq, J = 1.5, 1.5)	20.5	1.72 (dq, J = 1.5, 1.5)	20.6	1.54 (dq, J = 1.5, 1.5)	20.4
OH-C(2)	4.56 (br. s)	_	-	_	-	_
OH-C(4)	7.44 (br. s)	_	-	_	-	_
OH-C(11)	1.83 (br. s)	-	-	-	_	-

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of Compounds **1** and **2**¹). δ in ppm, J in Hz.

^a) Recorded at 600 MHz. ^b) Recorded at 150 MHz. ^c) Recorded at 400 MHz. ^d) Recorded at 100 MHz. ^e) $\delta(H)$ are interchangeable. ^f) $\delta(C)$ are interchangeable.

Compound **2** was obtained as a colorless oil. The EI-MS $(m/z \ 405 \ (7, [M+2]^+), 403 \ (66, M^+))$ indicated the presence of an odd number of N- and of S-atoms [8]. The molecular formula was determined to be $C_{21}H_{25}NO_6S$ by HR-EI-MS $(m/z \ 403.1448 \ (M^+))$, indicating ten degrees of unsaturation. The structure of **2** was identified by spectroscopic means as $(8\beta,10\alpha)$ -8-(angeloyloxy)-5,10-epoxythiazolo[5,4-*a*]bisabola-

1,3,5,7(14)-tetraene-4,11-diol¹), the absolute configuration of which remains to be established.

The ¹H- and ¹³C-NMR spectra of **2** in CD₃OD (*Table 1*) were very similar to those of **1**, except for a fully substituted benzene ring (δ (C) 118.8 (C(3)), 123.3 (C(6)), 125.8 (C(1)), 144.8 (C(5)), 146.8 (C(4)), 150.5 (C(2))) and an additional CH group (δ (H) 9.01 (*s*, H–C(16)); δ (C) 155.1 (C(16))). The proton resonating at δ (H) 9.01, which appeared to be at a C-atom situated between two heteroatoms according to the chemical shift of the C-atom (δ (C) 155.1) and a one-bond C,H coupling (J(C,H) = 215 Hz) [9], showed long-range coupling to C(1) (δ 125.8) and C(2) (δ 150.5) in the HMBC plot. After subtraction of the unsaturations due to an angeloyl group, a benzene ring, an exocyclic C=C and a seven-membered ring, we concluded that **2** comprises a thiazole ring fused to C(1) and C(2). The orientation was deduced by comparison of the δ (C)s with those of known benzothiazoles [10].

Compound **3** was obtained as a colorless oil. The molecular formula of **3** was determined as $C_{30}H_{42}O_{10}$ based on the HR-EI-MS (m/z 562.2785 (M^+)). The IR spectrum showed the presence of an OH group (3482 cm⁻¹), a six-membered ring ketone (1716 cm⁻¹), and an α,β -unsaturated ester (1716, 1647 cm⁻¹). The structure of **3** was determined to be ($1\alpha,2\alpha,3\beta,5\alpha,6\beta$)-1,5,8-tris(angeloyloxy)-10,11-epoxy-2,3-dihy-droxybisabol-7(14)-en-4-one¹). The absolute and relative configurations at C(8) and C(10) remain to be established.

The ¹H- and ¹³C-NMR spectra of **3** in CDCl₃ (*Table 2*) exhibited signals due to three Me groups (δ (H) 1.22 (s), 1.24 (s), 1.48 (s); δ (C) 18.8 (Me), 20.2 (Me), 24.6 (Me)), three angeloyl groups (δ (H) 1.89 (dq, J = 1.5, 1.5 Hz), 1.901 (dq, J = 1.5, 1.5 Hz), 1.904 (dq, J = 1.5, 1.5 Hz), 1.97 (dq, J = 7.3, 1.5 Hz), 1.98 (dq, J = 7.3, 1.5 Hz), 2.00 (dq, J = 7.3, 1.5 Hz), 6.11 (qq, J = 7.3, 1.5 Hz, 3 H); δ (C) 15.8 (Me), 15.9 (Me), 16.0 (Me), 20.5 (Me), 20.55 (Me), 20.57 (Me), 126.9 (C), 127.0 (C), 127.4 (C), 139.1 (CH), 139.6 (CH), 140.3 (CH), 166.11 (C), 166.15 (C), 166.8 (C)), a methylidene group (δ (H) 5.41 (s), 5.47 (s); δ (C) 114.6 (CH₂), 144.7 (C)), one CH₂ group (δ (H) 1.83 – 1.87 (m), 2.01 – 2.04 (m); δ (C) 33.2 (CH₂)), one CH group (δ (H) 3.22 (dd, J = 12.1, 11.4 Hz); δ (C) 44.1 (CH)), an epoxide moiety (δ (H) 2.80 (dd, J = 5.9, 5.9 Hz); δ (C) 58.1 (C), 60.9 (CH)), four oxygenated CH groups (δ (H) 4.13 (br. d, J = 2.6 Hz), 5.56 (dd, J = 8.8, 3.3 Hz), 5.94 (dd, J = 11.4, 2.6 Hz), 6.09 (d, J = 12.1 Hz); δ (C) 71.8 (CH), 72.9 (CH), 74.0 (CH), 76.2 (CH)), an oxygenated quaternary sp³ C-atom (δ (C) 76.9 (C)), and a C=O group (δ (C) 201.8). Furthermore, signals at δ (H) 2.16 (br. s) and 3.28 (br. s) were observed which disappeared by adding D₂O, indicating the presence of OH protons. To accommodate ten degrees of unsaturation, compound **3** was proposed to have a monocyclic sesquiterpene skeleton, with three angeloyl groups, an epoxy group, a keto group, and an exocyclic C=C bond. The ¹H,¹H-COSY of **3** (*Fig. 2, a*) implied the connectivities

Fig. 2. a) ${}^{1}H, {}^{1}H-COSY (\longrightarrow)$ and HMBC (\rightarrow) Correlations and b) selected J-values (----) and NOEs (\leftrightarrow) for **3**

	3		4		5	
	$\delta(H)^a)$	$\delta(C)^b)$	$\delta(H)^{c})$	$\delta(C)^d)$	$\delta(H)^a)$	$\delta(C)^b)$
H-C(1)	5.94 (dd, J = 11.4, 2.6)	72.9	4.65 (dd, J = 10.1, 2.5)	71.7	5.43 $(d, J = 9.2)$	70.5
H-C(2)	4.13 (br. $d, J = 2.6$)	76.2	5.58 (d, J = 2.5)	77.2	3.45 (s)	66.8
C(3)	-	76.9	-	76.1	-	60.7
C(4)	-	201.8	-	202.1	-	205.8
H-C(5)	6.09(d, J = 12.1)	74.0	6.08 (d, J = 12.2)	73.2	4.78 (dd, J = 12.1, 4.4)	70.1
H-C(6)	3.22 (dd, J = 12.1, 11.4)	44.1	2.79 (dd, J = 12.2, 10.1)	47.3	2.76 (dd, J = 12.1, 9.2)	54.3
C(7)	-	144.7	-	146.8	-	146.4
H-C(8)	5.56 (dd, J = 8.8, 3.3)	71.8	5.11 (dd, J = 8.2, 4.0)	75.6	5.48 (dd, J = 9.9, 1.8)	72.1
$CH_2(9)$	1.83 - 1.87, 2.01 - 2.04 (m)	33.2	n.d. ^e)	32.7	1.67 - 1.77 (m)	36.6
H - C(10)	2.80 (dd, J = 5.9, 5.9)	60.9	2.83 (dd, J = 6.3, 6.3)	60.7	3.51 (ddd,	73.2
. ,					J = 10.3, 3.7, 1.8)	
C(11)	-	58.1	-	58.4	-	76.8
Me(12)	$1.22 (s)^{f}$	18.8 ^g)	$1.25 (s)^{f}$	18.9 ^g)	$1.09 (s)^{f}$	19.2 ^g)
Me(13)	$1.24 (s)^{f}$	24.6 ^g)	$1.30(s)^{f}$	24.6 ^g)	$1.11(s)^{f}$	20.5 ^g)
$CH_{2}(14)$	5.41, 5.47 (2s)	114.6	5.32 (br. s)	111.4	5.26, 5.40 (2s)	114.6
Me(15)	1.48 (s)	20.2	1.36 (s)	19.9	1.54 (s)	14.5
C(1')	-	166.11	-	167.8	-	166.5
C(1")	-	166.8	_	167.0	_	167.2
C(1''')	-	166.15	_	166.4	_	
C(2')	-	126.9	_	127.2	_	126.9
C(2")	-	127.0	_	127.2	_	127.5
C(2''')	-	127.4	_	127.2	_	_
H-C(3')	6.11(qq, J=7.3, 1.5)	139.1	6.15 (qq, J = 7.3, 1.5)	139.3	6.10(qq, J = 7.3, 1.5)	139.2
H-C(3")	6.11 (qq, J = 7.3, 1.5)	139.6	6.15 (qq, J = 7.3, 1.5)	139.5	6.17 (qq, J = 7.3, 1.5)	140.6
H-C(3"")	6.11 (qq, J = 7.3, 1.5)	140.3	6.15 (qq, J = 7.3, 1.5)	141.1	-	_
Me(4')	1.97 (dq, J = 7.3, 1.5)	15.8	1.94 (dq, J = 7.3, 1.5)	15.8	1.97 (dq, J = 7.3, 1.5)	15.8
Me(4")	1.98 (dq, J = 7.3, 1.5)	15.9	1.96 (dq, J = 7.3, 1.5)	15.9	2.02 (dq, J = 7.3, 1.5)	16.0
Me(4''')	2.00 (dq, J = 7.3, 1.5)	16.0	2.00 (dq, J = 7.3, 1.5)	16.0	-	_
Me(5')	1.89 (dq, J = 1.5, 1.5)	20.5	1.86 (dq, J = 1.5, 1.5)	20.5	1.89 (dq, J = 1.5, 1.5)	20.5
Me(5")	1.901 (dq, J = 1.5, 1.5)	20.55	1.88 (dq, J = 1.5, 1.5)	20.6	1.92 (dq, J = 1.5, 1.5)	20.6
Me(5''')	1.904 (dq, J = 1.5, 1.5)	20.57	1.89 (dq, J = 1.5, 1.5)	20.5	-	_
OH-C(1)	-	_	4.68 (br. s)	_	-	_
OH-C(2)	2.16 (br. s)	_	-	_	-	_
OH-C(3)	3.28 (br. s)	_	2.85 (br. s)	_	-	_
OH-C(5)	-	_	-	_	3.64 (d, J = 4.4)	_
OH-C(10)	-	_	-	_	2.57 (d, J = 3.7)	_
MeO-C(11)	-	-	-	-	3.21 (s)	49.1

Table 2. ¹*H*- and ¹³*C*-*NMR* Data (CDCl₃) of Compounds $3-5^{1}$). δ in ppm, J in Hz.

^a) Recorded at 600 MHz. ^b) Recorded at 150 MHz. ^c) Recorded at 270 MHz. ^d) Recorded at 67.8 MHz. ^c) Not determined. ^f) δ (H) are interchangeable. ^g) δ (C) are interchangeable.

H-C(1)/H-C(2), H-C(1)/H-C(6), H-C(2)/OH-C(2), H-C(5)/H-C(6), H-C(8)/CH₂(9), and CH₂(9)/H-C(10). The HMBC (*Fig. 2, a*) showed the correlations H-C(1)/C(1'), H-C(5)/C(4) and C(1''), H-C(8)/C(1'''), Me(12)/C(10) and C(11), Me(13)/C(10) and C(11), CH₂(14)/C(6) and C(8), and Me(15)/C(2), C(3), and C(4). From these data, the constitution of **3** was deduced. The relative configuration of the substituents at the cyclohexenone ring was determined as follows. The coupling constants for H-C(6) (J(1,6) = 11.4 Hz, J(5,6) = 12.1 Hz) suggested that the angeloyloxy groups at C(1) and C(5) are both α -equatorially oriented, and the side chain at C(6) is β -equatorially oriented

(*Fig. 2, b*). The coupling constant for H–C(2) (J(1,2) = 2.6 Hz) suggested that the OH group at C(2) is α -axially oriented (*Fig. 2, b*). The NOE correlation between OH–C(2) and Me(15) in the NOESY plot confirmed that the OH group at C(3) is β -axially oriented.

Compound **4** was obtained as a colorless oil. The molecular formula of **4** was determined as $C_{30}H_{42}O_{10}$ based on the HR-EI-MS (m/z 562.2795 (M^+)). The ¹H- and ¹³C-NMR spectra of **4** (*Table 2*) were analogous to those of **3**. The structure of **4** was deduced as $(1\alpha, 2\alpha, 3\beta, 5\alpha, 6\beta)$ -2,5,8-tris(angeloyloxy)-10,11-epoxy-1,3-dihydroxybisabol-7(14)-en-4-one¹). The absolute and relative configurations at C(8) and C(10) remain to be established.

The one significant difference in the ¹H-NMR spectrum of **4**, compared with that of **3**, was that a *d* occurred at $\delta(H)$ 5.58 (J=2.5 Hz). Moreover, the *dd* of **3** at $\delta(H)$ 5.94 (H–C(1)) was shifted to $\delta(H)$ 4.65. The foregoing results clearly indicated that **4** was a constitutional isomer of **3**. The correlation peak between H–C(2) and C(1') (δ 167.8) in the HMBC of **4** also supported the proposed structure.

Compound **5** was obtained as a colorless oil. The molecular formula of **5** was determined as $C_{26}H_{38}O_9$ based on the HR-EI-MS (m/z 494.2509 (M^+)). The IR spectrum showed the presence of an OH group (3503 cm⁻¹), a six-membered-ring ketone (1719 cm⁻¹), and an α,β -unsaturated ester (1719, 1646 cm⁻¹). The structure of **5** was determined to be ($1\alpha,2\beta,3\beta,5\alpha,6\beta$)-1,8-bis(angeloyloxy)-2,3-epoxy-5,10-dihydroxy-11-methoxybisabol-7(14)-en-4-one¹). The absolute and relative configurations at C(8) and C(10) remain to be established.

The ¹H- and ¹³C-NMR spectra of 5 in CDCl₃ (Table 2) exhibited signals due to three Me groups $(\delta(H) 1.09 (s), 1.11 (s), 1.54 (s); \delta(C) 14.5 (Me), 19.2 (Me), 20.5 (Me)), one MeO group (\delta(H) 3.21 (s);$ δ (C) 49.1 (MeO)), two angeloyl groups (δ (H) 1.89 (dq, J = 1.5, 1.5 Hz), 1.92 (dq, J = 1.5, 1.5 Hz), 1.97 $(dq, J = 7.3, 1.5 \text{ Hz}), 2.02 (dq, J = 7.3, 1.5 \text{ Hz}), 6.10 (qq, J = 7.3, 1.5 \text{ Hz}), 6.17 (qq, J = 7.3, 1.5 \text{ Hz}); \delta(C)$ 15.8 (Me), 16.0 (Me), 20.5 (Me), 20.6 (Me), 126.9 (C), 127.5 (C), 139.2 (CH), 140.6 (CH), 166.5 (C), 167.2 (C)), a methylidene group (δ (H) 5.26 (s), 5.40 (s); δ (C) 114.6 (CH₂), 146.4 (C)), one CH₂ group $(\delta(H) \ 1.67 - 1.77 \ (m); \ \delta(C) \ 36.6 \ (CH_2))$, one CH group $(\delta(H) \ 2.76 \ (dd, J = 12.1, \ 9.2 \ Hz); \ \delta(C) \ 54.3$ (CH)), an epoxide moiety (δ (H) 3.45 (s); δ (C) 60.7 (C), 66.8 (CH)), four oxygenated CH groups (δ (H) 3.51 (*ddd*, *J* = 10.3, 3.7, 1.8 Hz), 4.78 (*dd*, *J* = 12.1, 4.4 Hz), 5.43 (*d*, *J* = 9.2 Hz), 5.48 (*dd*, *J* = 9.9, 1.8 Hz); δ (C) 70.1 (CH), 70.5 (CH), 72.1 (CH), 73.2 (CH)), an oxygenated quaternary sp³ C-atom (δ (C) 76.8 (C)), and a C=O group (δ (C) 205.8). Furthermore, signals at δ (H) 2.57 (d, J = 3.7 Hz) and 3.64 (d, J = 4.4 Hz) were observed which disappeared by adding D_2O_2 , indicating the presence of OH protons. To accommodate eight degrees of unsaturation, compound 5 was proposed to have a monocyclic sesquiterpene skeleton, with two angeloyl, an epoxy, and a keto group, and an exocyclic C=C bond. The ¹H,¹H-COSY of **5** (Fig. 3, a) implied the connectivities H-C(1)/H-C(6), H-C(6)/H-C(5), H-C(5)/OH-C(5), H-C(8)/CH₂(9), CH₂(9)/H-C(10), and H-C(10)/OH-C(10). The HMBC (Fig. 3, a) showed the correlations H-C(1)/C(1'), H-C(1)/C(2), H-C(8)/C(1''), Me(12)/C(10) and C(11), Me(13)/C(10) and C(11), CH₂(14)/C(6) and C(8), Me(15)/C(2), C(3), and C(4), and MeO(11)/ C(11). From these data, the constitution of 5 was deduced. The relative configuration of the substituents at the cyclohexenone ring was determined by the NOE correlations H-C(1)/H-C(5) in the NOESY and the coupling constants for H–C(6) (J(1,6) = 9.2 Hz, J(5,6) = 12.1 Hz) which suggested that the angeloyloxy group at C(1) and the OH group at C(5) are both α -equatorially oriented, and the side chain at C(6) is β -equatorially oriented (*Fig. 3, b*). The epoxy group at C(2)–C(3) must be β -oriented because the coupling constant of H-C(1) with H-C(2) was almost zero so their dihedral angle must be ca. 90° which results from the β -oriented epoxy group [11]. The epoxy configuration was supported by a NOESY cross-peak between H-C(2) and Me(15) (*Fig. 3, b*).

Fig. 3. a) ${}^{1}H,{}^{1}H$ -COSY (-) and HMBC (\rightarrow) Correlations and b) selected J-values (----) and NOEs (\leftrightarrow) for 5

Compound **6** was obtained as a colorless oil. The molecular formula of **6** was determined as $C_{14}H_{22}O_7$ based on the HR-EI-MS (m/z 302.1368 (M^+)). The structure of **6** was determined to be $(2\alpha,3\beta,5\alpha)$ -2-(acetyloxy)-9-methoxy-5-(methoxycarbonyl)-2,3-dimethylheptano-5-lactone¹). The absolute and relative configurations at C(9) remain to be established.

The ¹H- and ¹³C-NMR spectra of **6** in CDCl₃ (*Table 3*) exhibited signals due to three Me groups $(\delta(H) \ 1.00 \ (d, J = 6.8 \ Hz), 1.13 \ (d, J = 6.4 \ Hz), 1.46 \ (s); \delta(C) \ 13.9 \ (Me), 14.6 \ (Me), 18.9 \ (Me))$, one AcO group $(\delta(H) \ 2.07 \ (s); \delta(C) \ 21.0 \ (Me), 169.7 \ (C))$, two MeO groups $(\delta(H) \ 3.42 \ (s), 3.86 \ (s); \delta(C) \ 53.1 \ (MeO), 58.6 \ (MeO))$, one CH₂ group $(\delta(H) \ 1.89 \ (dd, J = 14.3, 13.5 \ Hz), 2.33 \ (dd, J = 14.3, 3.6 \ Hz); \delta(C) \ 30.1 \ (CH₂))$, one CH group $(\delta(H) \ 2.75 - 2.82 \ (m); \delta(C) \ 30.2 \ (CH))$, an oxygenated CH group $(\delta(H) \ 3.64 \ Mz) \ 5.64 \ Mz)$

Table 3. ¹*H*- (600 MHz) and ¹³*C*-*NMR* (150 MHz) Data of Compounds $6-8^{1}$) in CDCl₃. δ in ppm, J in Hz.

	6		7		8	
	$\delta(H)$	$\delta(C)$	δ(H)	$\delta(C)$	δ(H)	$\delta(C)$
C(1)	-	170.5	-	178.8	-	165.6
C(2) or H-C(2)	-	78.8	2.70 - 2.76(m)	42.6	-	125.4
H-C(3) or $CH_2(3)$	2.75–2.82 (<i>m</i>)	30.2	1.61 (dd , $J = 13.6, 8.8$), 2.63 (dd , $J = 13.6, 10.6$)	36.0	2.00 (ddd , $J = 16.9$, 14.3, 1.8), 2.57 (dd , $I = 16.9$, 5.1)	29.3
CH ₂ (4), C(4) or H–C(4)	1.89 (dd , $J = 14.3$, 13.5, H_a), 2.33 (dd , $J = 14.3$, 3.6, H_a)	30.1	_	86.0	2.08-2.15 (<i>m</i>)	36.5
C(5)	- -	88.4	-	79.0	_	85.1
C(6)	_	170.3	-	175.0	-	171.2
Me(7)	1.46(s)	18.9	1.48 (s)	20.6	1.64(s)	23.7
Me(8)	1.00 (d, J = 6.8)	14.6	1.49 (s)	24.9	1.14 (d, J = 7.0)	16.0
H-C(9) or $CH_2(9)$	3.64(q, J = 6.4)	79.6	1.50 - 1.53 (m), 1.87 - 1.90 (m)	25.3	7.17 (qdd , J = 7.3, 1.8, 1.8)	141.0
Me(10)	1.13 (d, J = 6.4)	13.9	0.98 (t, J = 7.3)	11.5	1.79 (dd, J = 7.3, 1.1)	14.1
OH-C(5)	-	-	3.34 (s)	-	-	-
MeO-C(6)	3.86 (s)	53.1	3.84 (s)	53.4	3.76 (s)	52.6
MeO-C(9)	3.42 (s)	58.6	-	-	-	-
AcO	2.07 (s)	21.0	-	-	-	-
	-	169.7	-	-	-	-

1034

 $(q, J = 6.4 \text{ Hz}); \delta(C)$ 79.6 (CH)), two oxygenated quaternary sp³ C-atoms ($\delta(C)$ 78.8 (C), 88.4 (C)), and two C=O groups ($\delta(C)$ 170.3, 170.5). The ¹H,¹H-COSY of **6** (*Fig. 4, a*) implied the connectivities H-C(3)/CH₂(4), H-C(3)/Me(8), and H-C(9)/Me(10). The HMBC (*Fig. 4, a*) showed the correlations CH₂(4)/C(5) and C(9), Me(7)/C(1) and C(2), Me(8)/C(2), Me(10)/C(5), MeO-C(6)/C(6), and MeO-C(9)/C(9). According to the molecular formula, there were four degrees of unsaturation in the molecule. One AcO group and two C=O groups accounted for three of those. The remaining degree of unsaturation was assumed to be due to a δ -lactone ring formed between C(1) and C(5) on the basis of the ¹³C-NMR data ($\delta(C)$ 88.4 (C(5)), 170.5 (C(1))) and the IR absorption (1736 cm⁻¹). The presence of the AcO group at C(2) was indicated by the NOESY plot, in which a cross-peak was observed between the AcO group and Me(7) (*Fig. 4, a*). From these data, the constitution of **6** was deduced. The relative configuration of **6** was determined as follows. The coupling constants $J(3,4\alpha) = 3.7$ Hz and $J(3,4\beta) =$ 13.6 Hz suggested that H-C(3)/H_a-C(4) and H-C(3)/H_β-C(4) are *gauche* and *anti* arranged, respectively (*Fig. 4, b*). The NOESY cross-peak Me(7)/Me(8) and Me(8)/Me(10) implied that Me-C(2) and Me-C(3) are on the same face (β) of the ring system, and that AcO-C(2) and MeOOC-C(5) are both on the α side (*Fig. 4, b*).

Fig. 4. a) ${}^{1}H, {}^{1}H-COSY(-), HMBC(-), and NOESY(---) Correlations and b) selected J-values (----) and NOEs (<math>\leftrightarrow$) for **6**

Compound **7** was obtained as a colorless oil. The molecular formula of **7** was determined as $C_{11}H_{18}O_5$ based on HR-EI-MS (m/z 230.1163 (M^+)). The structure of **7** was determined to be (2β , 4β)-2-ethyl-5-hydroxy-5-(methoxycarbonyl)-4,5-dimethylpentano-4-lactone¹). The absolute and relative configurations at C(5) remain to be established.

The ¹H- and ¹³C-NMR spectra of **7** in CDCl₃ (*Table 3*) exhibited signals due to three Me groups $(\delta(H) \ 0.98 \ (t, J = 7.3 \ Hz), 1.48 \ (s), 1.49 \ (s); \delta(C) \ 11.5 \ (Me), 20.6 \ (Me), 24.9 \ (Me))$, one MeO group $(\delta(H) \ 3.84 \ (s); \delta(C) \ 53.4 \ (MeO))$, two CH₂ groups $(\delta(H) \ 1.50-1.53 \ (m), 1.61 \ (dd, J = 13.6, 8.8 \ Hz), 1.87-1.90 \ (m), 2.63 \ (dd, J = 13.6, 10.6 \ Hz); \delta(C) \ 25.3 \ (CH₂), 36.0 \ (CH₂)), one CH group <math>(\delta(H) \ 2.70-2.76 \ (m); \delta(C) \ 42.6 \ (CH))$, two oxygenated quaternary sp³ C-atoms $(\delta(C) \ 79.0 \ (C), 86.0 \ (C))$, and two C=O groups $(\delta(C) \ 175.0, 178.8)$. Furthermore, a signal at $\delta(H) \ 3.34 \ (s)$ was observed which disappeared by adding D₂O, indicating the presence of an OH proton. The ¹H,¹H-COSY of **7** (*Fig. 5*) implied the connectivities $H-C(2)/CH_2(3), H-C(2)/CH_2(9), \text{and } CH_2(9)/Me(10)$. The HMBC (*Fig. 5*) showed the correlations CH₂(3)/C(1), Me(7)/C(4), C(5), and C(6), Me(8)/C(3), C(4), and C(5), MeO-C(6)/C(6), and OH-C(5)/C(5) and C(6). There were three degrees of unsaturation in the

Fig. 5. ${}^{1}H, {}^{1}H-COSY(-)$ and HMBC (\rightarrow) Correlations for 7

molecule according to the molecular formula. Two C=O groups accounted for two of those. The remaining degree of unsaturation was assumed to be due to a γ -lactone ring formed between C(1) and C(4) on the basis of the ¹³C-NMR data (δ (C) 86.0 (C(4)), 178.8 (C(1))) and the IR absorption (1765 cm⁻¹). From these data, the constitution of **7** was deduced. The NOESY cross-peak H–C(2)/Me(8) implied that the Et group at C(2) and the Me group at C(4) have β and α orientations, respectively.

Compound **8** was obtained as a colorless oil. The molecular formula of **8** was determined as $C_{11}H_{16}O_4$ based on HR-EI-MS (m/z 212.1055 (M^+)). The IR spectrum showed the presence of an ester (1740 cm⁻¹) and an α,β -unsaturated ester (1716, 1640 cm⁻¹). The ¹H- and ¹³C-NMR data (*Table 3*), analyzed with the aid of ¹H,¹H-COSY, NOESY, HMQC, and HMBC experiments, and the optical rotation value of **8** were in accord with those of (2E,4R,5S)-2-ethylidene-5-(methoxycarbonyl)-4-methyl-hexano-5-lactone¹) [12]. Compound **8** was isolated from a natural source for the first time, although **8** has already been synthesized by *Niwa et al.* [12].

We are grateful to Mr. S. Satoh and Mr. T. Matsuki for NMR and MS measurements.

Experimental Part

General. Column chromatography (CC): silica gel (230–400 mesh; Merck). Prep. HPLC: CCPD pump (Tosoh); TSKgel ODS-120T column (300 × 7.8 mm, Tosoh); RI-8010 detector (Tosoh). Optical rotations: Jasco DIP-360 digital polarimeter. UV Spectra: Beckman DU-64 spectrophotometer. IR Spectra: Perkin-Elmer Spectrum-One-FT-IR spectrometer. NMR Spectra: Jeol JNM-LA-600 (¹H, 600 MHz; ¹³C, 150 MHz), Jeol JNM-LA-400 (¹H, 400 MHz; ¹³C, 100 MHz), and Jeol JNM-EX-270 (¹H, 270 MHz; ¹³C, 67.8 MHz) spectrometers; chemical shifts δ in ppm, rel. to the residual signals of CDCl₃ (δ (H) 7.27, δ (C) 77.0) and CD₃OD (δ (H) 3.31, δ (C) 49.0). MS: Jeol JMS-DX-303 and Jeol JMS-700 mass spectrometers; in m/z (rel. %).

Plant Material. The roots of *Ligularia dentata* were collected in Sendai City, Miyagi Prefecture, Japan, in May 2004. A voucher specimen (LDB-2004-01) was deposited at the Laboratory of Molecular Structural Analysis, Tohoku Pharmaceutical University.

Extraction and Isolation. The roots of *Ligularia dentata* (2.3 kg) were extracted three times (14 days each time) with MeOH at r.t. and filtered. The MeOH extract was concentrated under reduced pressure, and the residue (138 g) was suspended in a small excess of H₂O. This suspension was extracted with Et₂O. The Et₂O-soluble fraction was concentrated under atmospheric pressure to afford a residue (16.6 g), which was subjected to CC (silica gel, hexane/AcOEt $4:1 \rightarrow 1:4$, AcOEt, CHCl₃/MeOH $4:1 \rightarrow 1:1$, and MeOH): *Fractions 1–44*, according to TLC. *Fr. 18*, on prep. HPLC (MeOH/H₂O 2:1, 1.0 ml/min), gave 0.5 mg of **8** (t_R 14.4 min), 0.8 mg of **1** (t_R 21.3 min), and 1.1 mg of **2** (t_R 37.8 min). *Fr. 19*, on prep. HPLC (MeOH/H₂O 2:1, 1.0 ml/min), gave 6/7 (t_R 15.0 min) and 2.3 mg of **4** (t_R 96.6 min). The mixture **6/7**, on prep. HPLC (MeOH/H₂O 2:1, 1.0 ml/min), gave 1.1 mg of **7** (t_R 22.5 min) and 0.8 mg of **6** (t_R 77.4 min).

(8β,10α)-8-(Angeloyloxy)-5,10-epoxybisabola-1,3,5,7(14)-tetraene-2,4,11-triol (=(2Z)-2-Methylbut-2-enoic Acid rel-(2R,4S)-2,3,4,5-Tetrahydro-7,9-dihydroxy-2-(1-hydroxy-1-methylethyl)-8-methyl-5-methylene-1-benzoxepin-4-yl Ester; **1**): Colorless oil. $[a]_{D}^{21} = +12.0$ (c = 0.08, MeOH). UV (MeOH): 214 (4.4), 248 (sh, 3.8), 295 (3.3). IR (CHCl₃): 3605, 3383, 1708, 1647, 1630, 1588, 1504. ¹H- and ¹³C-NMR: Table 1. EI-MS: 362 (39, M^+), 344 (2), 304 (2), 262 (52), 244 (16), 229 (28), 204 (34), 191 (100). HR-EI-MS: 362.1721 (M^+ , C₂₀H₂₆O₆⁺; calc. 362.1729).

(8β,10α)-8-(Angeloyloxy)-5,10-epoxythiazolo[5,4-a]bisabola-1,3,5,7(14)-tetraene-4,11-diol (=(2Z)-2-Methylbut-2-enoic Acid rel-(7R,9S)-7,8,9,10-Tetrahydro-5-hydroxy-7-(1-hydroxy-1-methylethyl)-4methyl-10-methyleneoxepino[2,3-g]benzothiazol-9-yl Ester; **2**): Colorless oil. $[a]_{24}^{D} = -27.3$ (c = 0.11, MeOH). UV (MeOH): 212 (4.4), 260 (4.0), 313 (3.5). ¹H- and ¹³C-NMR: Table 1. EI-MS: 405 (7, $[M+2]^+$), 403 (66, M^+), 303 (100), 285 (41), 270 (37), 245 (40), 232 (82). HR-EI-MS: 403.1448 (M^+ , C₂₁H₂₅NO₆S⁺; calc. 403.1453).

 $(1\alpha,2\alpha,3\beta,5\alpha,6\beta)$ -1,5,8-Tris(angeloyloxy)-10,11-epoxy-2,3-dihydroxybisabol-7(14)-en-4-one (= (2Z, 2'Z)-2-Methylbut-2-enoic Acid rel-(1R,2S,3S,4S,5R)-2-{3-(3,3-Dimethyloxiranyl)-1-methylene-2-{[(2Z)-2-methyl-1-oxobut-2-enyl]oxy}propyl]-4,5-dihydroxy-5-methyl-6-oxocyclohexane-1,3-diyl Ester; **3**): Colorless oil. $[\alpha]_{D}^{20} = +7.4 (c = 0.14, MeOH)$. IR (CHCl₃): 3482, 1716, 1647. ¹H- and ¹³C-NMR: *Table 2*. EI-MS: 562 (2, *M*⁺), 544 (1), 462 (3), 444 (2), 362 (5), 344 (5), 262 (9), 244 (6), 83 (100). HR-EI-MS: 562.2785 (*M*⁺, C₃₀H₄₂O₁₀; calc. 562.2778).

 $(1a,2a,3\beta,5a,6\beta)-2,5,8$ -Tris(angeloyloxy)-10,11-epoxy-1,3-dihydroxybisabol-7(14)-en-4-one (=(2Z, 2'Z)-2-Methylbut-2-enoic Acid rel-(1R,2S,4S,5R,6R)-5-{3-(3,3-Dimethyloxiranyl)-1-methylene-2-{[(2Z)-2-methyl-1-oxobut-2-enyl]oxy}propyl}-2,6-dihydroxy-2-methyl-3-oxocyclohexane-1,4-diyl Ester; **4**): Colorless oil. $[a]_D^{20} = +4.4$ (c = 0.23, MeOH). ¹H- and ¹³C-NMR: Table 2. EI-MS: 562 (1, M^+), 462 (1), 362 (2), 262 (2), 83 (100). HR-EI-MS: 562.2795 (M^+ , $C_{30}H_{42}O_{10}^+$; calc. 562.2778).

 $\begin{array}{l} (1a,2\beta,3\beta,5a,6\beta)-1,8-Bis(angeloyloxy)-2,3-epoxy-5,10-dihydroxy-11-methoxybisabol-7(14)-en-4-one \\ (=(2Z)-2-Methylbut-2-enoic Acid rel-(1R,2S,3R,4R,6R)-4-Hydroxy-3-{4-hydroxy-5-methoxy-5-methyl-1-methylene-2-{[(2Z)-2-methyl-1-oxobut-2-enyl]oxy}hexyl}-6-methyl-5-oxo-7-oxabicyclo[4.1.0]hept-2-yl \\ Ester; {\bf 5}): \mbox{Colorless oil. } [a]_D^{19} = +17.5 (c = 0.06, MeOH). IR (CHCl_3): 3503, 1719, 1646. {}^{1}H- and {}^{13}C-NMR: \\ Table 2. EI-MS: 494 (1, M^+), 462 (1), 421 (11), 394 (1), 362 (2), 321 (37), 294 (2), 262 (2), 221 (7), 83 \\ (77), 73 (100). HR-EI-MS: 494.2509 (M^+, C_{26}H_{38}O_{7}^+; calc. 494.2516). \end{array}$

 $(2\alpha, 3\beta, 5\alpha)$ -2-(Acetyloxy)-9-methoxy-5-(methoxycarbonyl)-2,3-dimethylheptano-5-lactone (=rel-(2R,4R,5S)-5-(Acetyloxy)tetrahydro-2-(1-methoxyethyl)-4,5-dimethyl-6-oxo-2H-pyran-2-caroxylic Acid Methyl Ester; **6**): Colorless oil. [α]_D²⁵ = +11.9 (c = 0.08, MeOH). IR (CHCl₃): 1736. ¹H- and ¹³C-NMR: Table 3. EI-MS: 302 (1, M^+), 244 (100), 216 (4), 202 (5), 184 (15), 174 (52), 156 (16), 141 (9), 113 (10), 59 (61). HR-EI-MS: 302.1368 (M^+ , C₁₄H₂₂O₇⁺; calc. 302.1365).

 $(2\beta,4\beta)$ -2-*Ethyl*-5-hydroxy-5-(*methoxycarbonyl*)-4,5-dimethylpentano-4-lactone (= rel-(2R,4R)-4-*Ethyltetrahydro-a-hydroxy-a*,2-dimethyl-5-oxofuran-2-acetic Acid Methyl Ester; **7**): Colorless oil. $[\alpha]_D^{26} = -18.9 (c = 0.11, \text{MeOH})$. IR (CHCl₃): 3527, 1765, 1728. ¹H- and ¹³C-NMR: *Table 3*. EI-MS: 230 (1, *M*⁺), 171 (11), 153 (4), 127 (100), 99 (15), 43 (39). HR-EI-MS: 230.1163 (*M*⁺, C₁₁H₁₈O₅⁺; calc. 230.1154).

(2E,4R,5S)-2-*Ethylidene-5-(methoxycarbonyl)-4-methylhexano-5-lactone* (= (2S,3R,5E)-5-*Ethylidenetetrahydro-2,3-dimethyl-6-oxo-2H-pyran-2-carboxylic Acid Methyl Ester*; **8**): Colorless oil. $[a]_{D}^{2D}$ = +20.4 (c = 0.05, MeOH). UV (MeOH): 221 (3.8). IR (CHCl₃): 1740, 1716, 1640. ¹H- and ¹³C-NMR: *Table 3.* EI-MS: 212 (7, *M*⁺), 153 (100), 134 (10), 125 (16), 107 (11), 81 (17), 43 (47). HR-EI-MS: 212.1055 (*M*⁺, C₁₁H₁₆O₄⁺; calc. 212.1049).

REFERENCES

- [1] K. Gao, Z. Jia, Phytochemistry 1998, 49, 167.
- [2] F. Bohlmann, D. Ehlers, C. Zdero, M. Grenz, Chem. Ber. 1977, 110, 2640.
- [3] K. Naya, T. Okayama, M. Fujiwara, M. Nakata, T. Ohtsuka, S. Kurio, Bull. Chem. Soc. Jpn. 1990, 63, 2239.
- [4] K. Gao, L. Yang, Z. Jia, Planta Med. 1997, 63, 461.
- [5] K. Gao, L. Yang, Z. Jia, Indian J. Chem. Sect. B 1997, 36, 715
- [6] Y. Asada, T. Furuya, Chem. Pharm. Bull. 1984, 32, 475.
- [7] K. Toyoda, Y. Yaoita, M. Kikuchi, Chem. Pharm. Bull. 2005, 53, 1555.
- [8] L. Arabshahi, F. J. Schmitz, Tetrahedron Lett. 1988, 29, 1099.
- [9] G. P. Gunawardana, S. Kohmoto, S. P. Gunasekera, O. J. McConnell, F. E. Koehn, J. Am. Chem. Soc. 1988, 110, 4856.
- [10] E. Pretsch, P. Bühlmann, C. Affolter, 'Structure Determination of Organic Compounds', Springer, Berlin, 2000.
- [11] B. Fu, Q. Zhu, X. Yang, Z. Jia, Pharmazie 1999, 54, 620.
- [12] H. Niwa, K. Kunitani, T. Nagoya, K. Yamada, Bull. Chem. Soc. Jpn. 1994, 67, 3094.

Received January 15, 2007